martes, 28 de febrero de 2012

Contraventeo


MARCOS CONTRAVENTEADOS

El sistema de contraventeo de una estructura de varios niveles deberá ser adecuado para:

  • Evitar el pandeo de las estructuras bajo cargas verticales.
  • Conservar la estabilidad lateral de la estructura incluyendo los efectos P-D bajo cargas verticales y horizontales de diseño.
Si el edificio tiene muros de cortante ligados a los marcos por medio de losas de concreto u otros sistemas de piso de rigidez suficiente, los muros se considerarán como parte del sistema vertical del contraventeo.

Al analizar el pandeo y la estabilidad lateral de la estructura puede considerarse a las columnas, vigas y diagonales de los marcos contraventeados como una armadura vertical en voladizo (en uniones articuladas) y deben considerarse sus deformaciones axiales.

Las fuerzas axiales de todos los miembros de los marcos contraventeados producidos por las fuerzas verticales y horizontales de diseño (Pi) deben cumplir:

P < 0.85 Py

Donde:
Py = At Fy

Las vigas incluidas en el sistema vertical de contraventeos se deben diseñar a flexocompresión considerando las fuerzas axiales debido a cargas laterales.

MARCOS SIN CONTRAVENTEO:

Las resistencias de marcos que pertenecen a edificios sin contraventeos ni muros de cortante deben determinarse con un ángulo que incluye el efecto de los desplazamientos laterales y de las deformaciones axiales de columnas.

Dichos marcos deben ser estables bajo la combinación de cargas laterales y verticales. Las fuerzas axiales en columnas deberán limitarse a 0.75 Py,

Donde: Py = At Fy

CLASIFICACION DE LAS SECCIONES:

Las secciones estructurales metálicas se clasifican en cuatro tipos de acuerdo a las relaciones ancho/espesor máximo de los elementos que las componen:

  • SECCION TIPO 1(Secciones para diseño plástico): Son aquellas que pueden alcanzar el momento plástico y conservarlo durante la rotación necesaria para que ocurra la redistribución de esfuerzos (momentos) en la estructura.
Mp = Fy Z Z = C S Z = módulo plástico C > 1
  • SECCION TIPO 2 (Para diseño plástico sin rotación, secciones compactas): Son aquellas que pueden alcanzar el momento plástico, pero no tienen capacidad bajo momento constante Mp.


My = Fy S S = I/C
  • SECCIONES TIPO 3 (para diseño a la fluencia o elástica, secciones semicompactas): Son aquellas que pueden alcanzar el momento elástico My (iniciación del flujo plástico).





  • SECCIONES TIPO 4 (Secciones esbeltas): Son aquellas que tienen como límite de resistencia el pandeo local de alguno de sus elementos (por esfuerzos de compresión).







http://metalbuilding.com.mx/productos/estructura-de-acero/contraventeo




Amortiguadores Sísmicos




lunes, 20 de febrero de 2012

CONEXIÓN VIGA-COLUMNA



La Figura 3.8 (Park, 1995) muestra tres tipos diferentes de
soluciones de conexiones en marcos prefabricados en zonas
sísmicas. En la conexión mostrada en la Figura 3.8a las trabes
prefabricadas descansan en el recubrimiento de la columna
inferior colada previamente a la colocación de las trabes; el
refuerzo negativo de la trabe se coloca en sitio. Una ventaja del
empleo de este sistema es que se logra disminuir de manera
apreciable la cantidad de cimbra en comparación con la que sería
necesaria en el colado de una estructura monolítica. Sin embargo,
una desventaja del empleo de este sistema, es que el refuerzo del
lecho inferior de la trabe prefabricada requiere una dimensión de
columna suficiente para lograr la longitud de desarrollo requerida.
Más adelante se comentan las otras conexiones que se muestran
en la Figura 3.8. La Figura 3.9 (Guidelines, 1991) muestra las
dimensiones mínimas necesarias para el gancho del acero de
refuerzo en este tipo de conexión. Para ilustrar la aplicación de
esta recomendación, consideremos por ejemplo que el refuerzo
del lecho inferior que se muestra en la Figura 3.9 es de 25.4 mm
de diámetro, de acuerdo con la recomendación, la dimensión de
la columna en el sentido del análisis deberá ser de 950 mm. Estas
dimensiones de columna podrían llevar a una solución
antieconómica para la estructura prefabricada. Con el detalle del
refuerzo del lecho superior mostrado en la Figura 3.9 se logra la
continuidad necesaria; sin embargo, es posible que no sea
factible obtener una transferencia adecuada de esfuerzos entre el
concreto y el refuerzo del lecho inferior de la conexión.


BIBLIOGRAFÍA


viernes, 10 de febrero de 2012

Estructura de Acero de Tres Placas Vigas y Columnas de Acero

TIPOS DE UNIONES DE ACERO

La construcción en estructuras metálicas debe entenderse como prefabricada por excelencia, lo que significa que los diferentes elementos que componen una estructura deben ensamblarse o unirse de alguna manera que garantice el comportamiento de la estructura según fuera diseñada.
La selección del tipo de conexiones debe tomar en consideración el comportamiento de la conexión (rígida, flexible, por contacto, por fricción, etc.), las limitaciones constructivas, la facilidad de fabricación (accesibilidad de soldadura, uso de equipos automáticos, repetición de elementos posibles de estandarizar, etc.) y aspectos de montaje (accesibilidad para apernar o soldar en terreno, equipos de levante, soportes provisionales y hasta aspectos relacionados con clima en el lugar de montaje, tiempo disponible, etc.

Remaches en caliente o roblones.
Las primeras estructuras metálicas empleadas en los puentes a mediados del siglo XIX se construían a partir de hierro colado y/o forjado, materializándose las uniones mediante remaches en caliente o roblones. Para hacer este tipo de uniones, las planchas que se debían unir se perforaban en un régimen que se determinaba por cálculo, reforzando los empalmes y traslapes con planchas igualmente perforadas de acuerdo al mismo patrón. Muchas veces estas planchas adicionales llegaron a representar hasta el 20% del peso total de la estructura. Los roblones o remaches tienen una cabeza ya preformada en forma redondeada y se colocan precalentados a una temperatura de aprox. 1.200ºC, pasándolos por las perforaciones y remachando la cara opuesta hasta conformar la segunda cabeza. Al enfriarse, su caña sufrirá una contracción que ejercerá una fuerte presión sobre los elementos que se están uniendo. Este sistema de conexión funciona por la enorme dilatación térmica del acero que permite que, aún elementos relativamente cortos como los roblones, se contraigan significativamente al enfriarse desde los 1.200ºC hasta la temperatura ambiente. (El coeficiente de expansión lineal del acero es 0,0000251 x longitud del elemento x diferencial de temperatura = contracción/expansión de la pieza).

Soldadura

La soldadura es la forma más común de conexión del acero estructural y consiste en unir dos piezas de acero mediante la fusión superficial de las caras a unir en presencia de calor y con o sin aporte de material agregado. Cuando se trabaja a bajas temperaturas y con aporte de un material distinto al de las partes que se están uniendo, como por ejemplo el estaño, se habla de soldadura blanca, que es utilizada en el caso de la hojalatería, pero no tiene aplicación en la confección de estructuras.

Cuando el material de aporte es el mismo o similar al material de los elementos que se deben unir conservando la continuidad del material y sus propiedades mecánicas y químicas el calor debe alcanzar a fundir las caras expuestas a la unión. De esta forma se pueden lograr soldaduras de mayor resistencia capaces de absorber los esfuerzos que con frecuencia se presentan en los nudos. Las ventajas de las conexiones soldadas son lograr una mayor rigidez en las conexiones, eventuales menores costos por reducción de perforaciones, menor cantidad de acero para materializarlas logrando una mayor limpieza y acabado en las estructuras.

Sin embargo, tienen algunas limitaciones importantes que se relacionan con la posibilidad real de ejecutarlas e inspeccionarlas correctamente en obra lo que debe ser evaluado en su momento (condiciones ergonométricas del trabajo del soldador, condiciones de clima, etc.) Hoy en día, una tendencia ampliamente recomendada es concentrar las uniones soldadas en trabajos en el taller y hacer conexiones apernadas en obra.

Los tipos de conexiones de perfiles y planchas por soldadura son las siguientes:
uniones_02

Entre los variados tipos de soldadura se pueden mencionar:

  • Soldadura Oxiacetilénica, en que la temperatura se logra encendiendo una mezcla de gases de oxígeno y acetileno en el soplete capaz de fundir los bordes de las planchas a unir a la que se le agrega el material de aporte proveniente de una varilla con la que se rellena el borde a soldar. El principio de la soldadura con mezcla de oxígeno y acetileno se emplea también en el corte de planchas.
  • Soldadura al Arco, los procesos más utilizados hoy son la soldadura por arco eléctrico en que se genera un arco voltaico entre la pieza a soldar y la varilla del electrodo que maneja el operador que produce temperaturas de hasta 3.000ºC. Los materiales que revisten el electrodo se funden con retardo, generando una protección gaseosa y neutra en torno al arco eléctrico, evitando la oxidación del material fundido a tan alta temperatura. Este proceso puede ser manual, con electrodo revestido o automática con arco sumergido.

articulación: Método o forma de unión entre dos o más elementos conservando cada uno de ellos su individualidad. También llamada junta de pasador, rótula, unión articulada.

empotramiento: Conexión entre dos miembros estructurales que impide la rotación y el desplazamiento en cualquier dirección de un miembro con respecto al otro. También llamado nudo rígido, junta rígida, unión rígida.

Columnas de acero. Las columnas de acero pueden ser sencillas, fabricadas directamente con perfiles estructurales, empleados como elemento único, o de perfiles compuestos, para los cuales se usan diversas combinaciones, como las viguetas H, I, la placa, la solera, el canal y el tubo, y el Angulo de lados iguales o desiguales.

martes, 7 de febrero de 2012

HIERRO

El hierro era conocido y utilizado para los propósitos ornamentable y para armas en edades prehistóricas; el espécimen mas temprano todavía existente es un grupo de cuentas férricas oxidadas encontradas en Egipto, en el año 4000AC. El termino arqueológico, edad férrica, solo aplicaba propiamente al periodo cuando se uso el hierro extensivamente para los propósitos utilitarios, como para herramientas, así como para la ornamentación.

Es un metal blando, dúctil y maleable cuyo peso especifico es de 7.86 y su punto de fusión es de 1500°C; antes de fundirse se reblandece y se puede trabajar. Todos los productos obtenidos con el hierro y sus aleaciones se denominan productos siderúrgicos. Para la obtención del hierro son necesarios minerales ferrosos y otras materias como fundentes y carbón. Los minerales de hierro mas importantes son: magnetita, oligisto, limonita y siderita.





ACERO. Son aquellos productos ferrosos cuyo tanto porciento de carbono esta comprendido entre 0.05% y 1.7%; el acero endurece por el temple y una vez templado, tiene la propiedad de que si se calienta de nuevo y se enfría lentamente, disminuye su dureza. El acero funde entre los 1400 y 1500°C, y se puede moldear con mas facilidad que el hierro.

Aceros se pueden clasificar según se obtengan en estado sólido: ensoldados, batidos o forjados; o, en estado liquido, en hieroos o aceros de fusión y homogéneos. También se clasifican según su composición química, en aceros originarios, al carbono y especiales.

La proporción de carbono influye sobre las características del metal. Se distinguen dos grandes familias de acero: los aceros aleados y los no aleados. Existe una aleación cuando los elementos químicos distintos al carbono se adicionan al hierro según una dosificación mínima variable para cada uno de ellos.


El acero más usado es el A-36.